Ulrich ideals of dimension 1

Shiro Goto and Naoki Taniguchi

Meiji University

International Productivity Ceter, Hayama

November 24, 2012

Introduction A brief survey The Gorenstein case The non–Gorenstein case Using value semigroups References

Introduction

- In 1987 B. Ulrich and the other authors [BHU] introduced Maximally Generated Maximal Cohen–Macaulay modules.
- In 2012 S. Goto and the others [GOTWY] generalized the notion of MGMCM module, which they call Ulrich module/ideal.

I am interested in the following question.

Question 1

How many Ulrich ideals are contained in a given Cohen–Macaulay local ring of <u>dimension 1</u>?

Introduction A brief survey The Gorenstein case The non-Gorenstein case Using value semigroups References

Introduction

- In 1987 B. Ulrich and the other authors [BHU] introduced Maximally Generated Maximal Cohen–Macaulay modules.
- In 2012 S. Goto and the others [GOTWY] generalized the notion of MGMCM module, which they call Ulrich module/ideal.

I am interested in the following question.

Question 1

How many Ulrich ideals are contained in a given Cohen–Macaulay local ring of dimension 1?

Introduction A brief survey The Gorenstein case The non-Gorenstein case Using value semigroups Reference:

Contents

- Introduction
- A brief survey
- The Gorenstein case
- The non-Gorenstein case
- Using value semigroups

Introduction

Throughout of my lecture, we assume

- **1** (A, \mathfrak{m}) a **Cohen–Macaulay** local ring, dim A = 1
- ② I an \mathfrak{m} -primary ideal in A, $n = \mu_A(I)$
- **1** Contains a parameter ideal Q = (a) of A as a reduction.

Definition 2 ([GOTWY])

We say that I is an **Ulrich ideal** of A, if

- ① $I \supseteq Q$, $I^2 = QI$, and
- ② $1/1^2$ is A/I—free.

Throughout of my lecture, we assume

- **1** (A, \mathfrak{m}) a **Cohen–Macaulay** local ring, dim A = 1
- ② I an \mathfrak{m} -primary ideal in A, $n = \mu_A(I)$
- **1** Contains a parameter ideal Q = (a) of A as a reduction.

Definition 2 ([GOTWY])

We say that *I* is an **Ulrich ideal** of *A*, if

- 2 I/I^2 is A/I—free.

Let \mathcal{X}_A be the set of **Ulrich ideals** in A.

Theorem 3 ([GOTWY])

Suppose that A is of finite C–M representation type. Then \mathcal{X}_A is a finite set.

Let

$$A = k[[t^{a_1}, t^{a_2}, \dots, t^{a_\ell}]] \subseteq k[[t]] = \overline{A}$$

be the numerical semigroup ring over a field k, where $0 < a_1, a_2, \ldots, a_\ell \in \mathbb{Z}$ such that $GCD(a_1, a_2, \ldots, a_\ell) = 1$. Let $\mathcal{X}_A^g = \{Urich \text{ ideals in } A \text{ generated by monomials in } t$

Theorem 4 ([GOTWY])

The set \mathcal{X}_{s}^{g} is finite

Let \mathcal{X}_{A} be the set of **Ulrich ideals** in A.

Theorem 3 ([GOTWY])

Suppose that A is of finite C-M representation type. Then \mathcal{X}_A is a finite set.

Introduction

$$A = k[[t^{a_1}, t^{a_2}, \dots, t^{a_\ell}]] \subseteq k[[t]] = \overline{A}$$

Let \mathcal{X}_A be the set of **Ulrich ideals** in A.

Theorem 3 ([GOTWY])

Suppose that A is of finite C–M representation type. Then \mathcal{X}_A is a finite set.

Let

$$A = k[[t^{a_1}, t^{a_2}, \dots, t^{a_\ell}]] \subseteq k[[t]] = \overline{A}$$

be the numerical semigroup ring over a field k, where $0 < a_1, a_2, \ldots, a_\ell \in \mathbb{Z}$ such that $GCD(a_1, a_2, \ldots, a_\ell) = 1$. Let $\mathcal{X}_A^g = \{ \text{Ulrich ideals in } A \text{ generated by } \text{monomials in } t \}$.

Theorem 4 ([GOTWY])

The set \mathcal{X}^g_{Δ} is finite.

Let \mathcal{X}_{A} be the set of **Ulrich ideals** in A.

Theorem 3 ([GOTWY])

Suppose that A is of finite C-M representation type. Then \mathcal{X}_A is a finite set.

Let

$$A = k[[t^{a_1}, t^{a_2}, \dots, t^{a_\ell}]] \subseteq k[[t]] = \overline{A}$$

be the numerical semigroup ring over a field k, where $0 < a_1, a_2, \ldots, a_{\ell} \in \mathbb{Z}$ such that $GCD(a_1, a_2, \ldots, a_{\ell}) = 1$. Let $\mathcal{X}_{\Lambda}^{g} = \{\text{Ulrich ideals in } A \text{ generated by } \text{monomials in } t\}.$

Theorem 4 ([GOTWY])

The set \mathcal{X}_{Δ}^{g} is finite.

We continue the research [GOTWY], providing a practical method for counting Ulrich ideals in dimension 1.

A brief survey

Lemma 5

Suppose that $I^2 = QI$. Then TFAE.

- I is an Ulrich ideal of A.
- 1/Q is a free A/I-module.

$$0 \to Q/QI \to I/I^2 \to I/Q \to 0.$$

A brief survey

Lemma 5

Suppose that $I^2 = QI$. Then TFAE.

- I is an Ulrich ideal of A.
- 1/Q is a free A/I-module.

Proof.

The equivalence of conditions (1) and (2) follows from the splitting of the sequence

$$0 \rightarrow Q/QI \rightarrow I/I^2 \rightarrow I/Q \rightarrow 0$$
.

When this is the case, $I/Q \cong (A/I)^{n-1}$, since Q = (a) is generated by a part of a minimal basis of I.

Let I be an Ulrich ideal and look at the isomorphism

$$I/Q \cong (A/I)^{n-1}$$
.

Then we get the following.

Let I be an Ulrich ideal and look at the isomorphism

$$I/Q \cong (A/I)^{n-1}$$
.

Then we get the following.

Corollary 6

- Q: I = I.
- $0 < (n-1) \cdot r(A/I) = r_A(I/Q) \le r(A/Q) = r(A),$

where $r(A) = \ell_A(\mathsf{Ext}^1_A(A/\mathfrak{m},A))$. Hence $n \leq r(A) + 1$.

Therefore, if A is a **Gorsenstein** ring, A/I is a Gorenstein ring, n = 2, and I is a **good ideal** in the sense of [GIW].

4 D > 4 A > 4 B > 4 B > B 9 9 9

Let I be an Ulrich ideal and look at the isomorphism

$$I/Q \cong (A/I)^{n-1}$$
.

Then we get the following.

Corollary 6

- **1** Q: I = I.
- $0 < (n-1) \cdot r(A/I) = r_A(I/Q) \le r(A/Q) = r(A),$
- where $r(A) = \ell_A(\operatorname{Ext}_A^1(A/\mathfrak{m}, A))$. Hence $n \leq r(A) + 1$.

Therefore, if A is a **Gorsenstein** ring, A/I is a Gorenstein ring, n = 2, and I is a **good ideal** in the sense of [GIW].

Let I be an Ulrich ideal of A. Let

$$\mathbb{F}_{\bullet}: \cdots \to F_i \stackrel{\partial_i}{\to} F_{i-1} \to \cdots \to F_1 \stackrel{\partial_1}{\to} F_0 \to A/I \to 0$$

be a **minimal** free resolution of A/I and $\beta_i = \operatorname{rank}_A F_i$ $(i \ge 0)$.

Theorem 7 ([GOTWY])

$$\beta_i = \begin{cases} (n-1)^{i-1} \cdot n & (i \ge 1) \\ 1 & (i = 0) \end{cases}$$

for $i \geq 0$. Hence $\beta_i = \binom{1}{i} + (n-1)\beta_{i-1}$ for $\forall i \geq 1$.

Let I be an Ulrich ideal of A. Let

$$\mathbb{F}_{\bullet}: \cdots \to F_i \stackrel{\partial_i}{\to} F_{i-1} \to \cdots \to F_1 \stackrel{\partial_1}{\to} F_0 \to A/I \to 0$$

be a **minimal** free resolution of A/I and $\beta_i = \operatorname{rank}_A F_i$ (i > 0).

Theorem 7 ([GOTWY])

$$\beta_i = \left\{ \begin{array}{ll} (n-1)^{i-1} \cdot n & (i \ge 1), \\ 1 & (i = 0) \end{array} \right.$$

for $i \geq 0$. Hence $\beta_i = \binom{1}{i} + (n-1)\beta_{i-1}$ for $\forall i \geq 1$.

Look at the exact sequence

$$0 \to Q \to I \to (A/I)^{\oplus (n-1)} \to 0.$$

Corollary 8 ([GOTWY])

A minimal free resolution of I is obtained by those of Q and $(A/I)^{\oplus (n-1)}$.

Corollary 9 ([GOTWY])

$$\operatorname{Syz}_{\Delta}^{i+1}(A/I) \cong [\operatorname{Syz}_{\Delta}^{i}(A/I)]^{\oplus (n-1)}$$
 for all $i \geq 1$. Hence

$$\operatorname{Syz}_A^{i+1}(A/I) \cong \operatorname{Syz}_A^i(A/I)$$

for all i > 1, if A is a Gorenstein local ring.

November 24, 2012

Look at the exact sequence

$$0 \to Q \to I \to (A/I)^{\oplus (n-1)} \to 0.$$

Corollary 8 ([GOTWY])

A minimal free resolution of I is obtained by those of Q and $(A/I)^{\oplus (n-1)}$.

Corollary 9 ([GOTWY])

$$\operatorname{\mathsf{Syz}}^{i+1}_A(A/I) \cong [\operatorname{\mathsf{Syz}}^i_A(A/I)]^{\oplus (n-1)}$$
 for all $i \geq 1$. Hence

$$\operatorname{\mathsf{Syz}}^{i+1}_{A}(A/I) \cong \operatorname{\mathsf{Syz}}^{i}_{A}(A/I)$$

for all $i \geq 1$, if A is a Gorenstein local ring.

Let I and J be Ulrich ideals of A. Then I = J if and only if

$$\operatorname{\mathsf{Syz}}^i_A(A/I) \cong \operatorname{\mathsf{Syz}}^i_A(A/J)$$

for some i > 0.

11 / 24

Example 11

Suppose that A is a **Gorenstein** local ring of dimension 1 and I an **Ulrich** ideal of A. Then $\mu_A(I)=2$. We write I=(a,x) $(x\in A)$ where Q=(a) is a reduction of I. Then $x^2=ay$ for some $y\in I$, since $I^2=aI$, and a minimal free resolution of A/I is given by

$$\mathbb{F}_{\bullet}: \cdots \to A^{2} \stackrel{\begin{pmatrix} -x & -y \\ a & x \end{pmatrix}}{\longrightarrow} A^{2} \stackrel{\begin{pmatrix} -x & -y \\ a & x \end{pmatrix}}{\longrightarrow} A^{2} \stackrel{\begin{pmatrix} \mathbf{a} & x \end{pmatrix}}{\longrightarrow} A \stackrel{\varepsilon}{\to} A/I \to 0.$$

Hence $I \cong I^*$.

◆ロト ◆個ト ◆差ト ◆差ト を めらぐ

The Gorenstein case

Definition 12 ([GIW])

We say that I is a **good ideal** of A, if

- **2** Q: I = I.

Let V_A be the set of intermediate rings $A \subsetneq B \subseteq Q(A)$ such that B is a finitely generated A-module and put

$$\mathcal{Y}_{\mathsf{A}} = \{I \mid I \text{ is a good ideal of } A\}.$$

$$\mathcal{Z}_{A} = \{ B \in \mathcal{V}_{A} \mid B \text{ is a Gorenstein ring} \}.$$

Hence $\mathcal{X}_A \subseteq \mathcal{Y}_A$ and $\mathcal{Z}_A \subseteq \mathcal{V}_A$.

The Gorenstein case

Definition 12 ([GIW])

We say that I is a **good ideal** of A, if

- ② Q: I = I.

Let V_A be the set of intermediate rings $A \subsetneq B \subseteq Q(A)$ such that B is a finitely generated A-module and put

$$\mathcal{Y}_{A} = \{I \mid I \text{ is a good ideal of } A\},$$

$$\mathcal{Z}_{A} = \{B \in \mathcal{V}_{A} \mid B \text{ is a Gorenstein ring}\}.$$

Hence $\mathcal{X}_A \subseteq \mathcal{Y}_A$ and $\mathcal{Z}_A \subseteq \mathcal{V}_A$.

Lemma 13 (Main Lemma)

We have a well-defined bijective map

$$\varphi: \mathcal{Z}_A \to \mathcal{Y}_A, \quad B \mapsto A: B,$$

where for each $B \in \mathcal{Z}_A$, $A : B \in \mathcal{X}_A \Leftrightarrow \mu_A(B) = 2$.

Lemma 13 (Main Lemma)

We have a well-defined bijective map

$$\varphi: \mathcal{Z}_A \to \mathcal{Y}_A, \quad B \mapsto A: B,$$

where for each $B \in \mathcal{Z}_A$, $A : B \in \mathcal{X}_A \Leftrightarrow \mu_A(B) = 2$.

Proof.

Let $B \in \mathcal{Z}_A$ and put J = A : B. Then J = bB for some $b \in J$, since B is a Gorenstein ring and $J \cong K_B$. Let $\mathfrak{q} = bA$. Then $J^2 = \mathfrak{q}J$ and $\mathfrak{q}:J=A:B=J$, so that J is a **good** ideal of A. If $J\in\mathcal{X}_A$, then $\mu_A(B) = \mu_A(J) = 2$. Suppose that $\mu_A(B) = 2$. Then J/\mathfrak{q} is cyclic, since q is a minimal reduction of J. Hence $J/q \cong A/J$, because $\mathfrak{q}:J=J.$ Thus $J\in\mathcal{X}_A.$

4 D > 4 A > 4 B > 4 B >

14 / 24

Let $A = k[[t^n, t^{n+1}, \dots, t^{2n-2}]]$ $(n \ge 3)$. Then

$$\mathcal{X}_{A} = \begin{cases} \{(t^{4}, t^{6})\} & (n = 3), \\ \{(t^{4} - \lambda t^{5}, t^{6}) \mid \lambda \in k\} & (n = 4), \\ \emptyset & (n \geq 5). \end{cases}$$

Proof of the case: n = 2q + 1 $(q \ge 2)$. Let $I \in \mathcal{X}_A$ and $S = \frac{I}{a}$. Then

$$t^n V \subseteq k[[t^n, t^{n+1}, \dots, t^{2n-1}]] \subseteq S,$$

since t^{2n-1} is the generator of the socle of Q(A)/A. Let

$$\mathcal{C}:=S:V=t^cV\ (c\geq 0).$$

Then $c \le n = 2q + 1$. We put $\ell = \ell_S(V/S)$. Hence

$$2\ell = c$$
,

since S is a **Gorenstein** ring. Thus $\ell \leq q$. Look at

$$\overline{S} := S/\mathfrak{m}S \supseteq J := \mathfrak{m}_{\overline{S}} \supseteq J^2 = (0).$$

Take $\xi \in \mathfrak{m}_S$ so that $J = (\overline{\xi})$. Then $\overline{\xi} \neq 0$ and $\overline{\xi}^2 = 0$ in \overline{S} .

Proof of the case: n = 2q + 1 ($q \ge 2$) (continued).

Hence

$$\xi^2\in \mathfrak{m} S\subseteq t^n V$$
 and $S=A+A\xi,$

because $S/\mathfrak{m}S = k + k\overline{\xi}$. Therefore $2 \cdot o(\xi) \geq n = 2q + 1$, so that $o(\xi) > q + 1$. Thus

$$S = A + A\xi \subseteq T := k[[t^{q+1}, t^{q+2}, \dots, t^{2q+1}]].$$

Hence S = T, because

$$\ell_A(V/T) = q$$
 and $\ell_S(V/S) \le q$.

This is impossible. Thus $\mathcal{X}_{A} = \emptyset$.

For some special class of one–dimensional Cohen–Macaulay local rings possessing **finite C–M representation type**, we have the following, where k[[X, Y]] and k[[t]] are the formal power series rings over a field k, and x, y denote the images of X, Y in the corresponding ring.

Theorem 15

The following assertions hold true

- ① $\mathcal{X}_{k[[t^3,t^4]]} = \{(t^4,t^6)\}.$

- ① $\mathcal{X}_{k[[X,Y]]/(Y(Y^2-X^3))} = \{(x^3,y)\}.$

For some special class of one-dimensional Cohen-Macaulay local rings possessing finite C-M representation type, we have the following, where k[X, Y] and k[t] are the formal power series rings over a field k, and x, y denote the images of X, Y in the corresponding ring.

Theorem 15

The following assertions hold true.

- $2 \mathcal{X}_{k[[t^3,t^5]]} = \emptyset.$
- **3** $\mathcal{X}_{k[[X,Y]]/(Y(X^2-Y^{2\ell+1}))} = \{(x,y^{2\ell+1}),(x^2,y)\}, \text{ where } \ell > 1.$
- $\mathcal{X}_{k[[X,Y]]/(X^2-Y^{2\ell})} = \\ \{(x^2,y),(x-y^\ell,y(x+y^\ell)),(x+y^\ell,y(x-y^\ell))\}, \text{ where } \ell \geq 1$ and ch $k \neq 2$.

The non-Gorenstein case

Theorem 16

Let (V, \mathfrak{n}) be a Cohen-Macaulay local ring with dim V = 1. Let $A = V[Y]/(Y^n)$ $(n \ge 2)$. Then $\sharp \mathcal{X}_A = \infty$.

Let (V, \mathfrak{n}) be a Cohen–Macaulay local ring with dim V = 1. Let $A = V[Y]/(Y^n)$ $(n \ge 2)$. Then $\sharp \mathcal{X}_A = \infty$.

Proof.

Suppose n=2q+1 $(q\geq 1)$ and let a be a parameter for V. For each $\ell>0$, let $I=I_\ell:=(a^{2\ell}-y,a^\ell y^q)$, where y is the image of Y in A. Then $I^2=(a^{2\ell}-y)I$, while $A/(a^{2\ell}-y)\cong V/(a^{2\ell n})$ and $A/I\cong V/(a^{\ell n})$. Hence $\ell_V(I/(a^{2\ell}-y))=\ell_V(A/I)$. Therefore $I/(a^{2\ell}-y)\cong A/I$ as A-modules, so that $I_\ell=I\in\mathcal{X}_A$. Hence $\sharp\mathcal{X}_A=\infty$.

For the case n=2q $(q \ge 1)$, consider $I=I_{\ell}:=(a^{\ell}, y^q)$.

4 D > 4 D > 4 D > 4 D >

Suppose that $A = \widehat{A}$ and A is a reduced ring. Let \overline{A} be the integral closure of A in the total quotient ring. Then

$$\mathcal{X}_A = \{\mathfrak{m}\}, \text{ if } \mathfrak{m}\overline{A} \subseteq A \text{ and } A \neq a \text{ RLR}.$$

Suppose that $A = \widehat{A}$ and A is a reduced ring. Let \overline{A} be the integral closure of A in the total quotient ring. Then

$$\mathcal{X}_A = \{\mathfrak{m}\}, \text{ if } \mathfrak{m}\overline{A} \subseteq A \text{ and } A \neq a \text{ RLR}.$$

Proof.

The ring A is a finitely generated A-module and $\mathfrak{m}A = \mathfrak{m}$. Take $a \in \mathfrak{m}$ so that $\mathfrak{m} = a\overline{A}$. Then $\mathfrak{m}^2 = a\mathfrak{m}$ and $\mu_A(\mathfrak{m}) > 1$. Thus $\mathfrak{m} \in \mathcal{X}_A$. Conversely, let $I \in \mathcal{X}_A$ and choose a reduction Q = (a) of I. Then $\mathfrak{m}_{-2}^{I} \subseteq A$, since $\frac{I}{2} \subseteq \overline{A}$. Hence $\mathfrak{m}_{I} \subseteq Q$. Therefore $I = \mathfrak{m}_{1}$, since I/Q is A/I-free. Thus $\mathcal{X}_A = \{\mathfrak{m}\}.$

Corollary 18

Let $n \geq 2$ and $A = k[[t^n, t^{n+1}, \dots, t^{2n-1}]]$. Then $\mathcal{X}_A = \{\mathfrak{m}\}$.

Corollary 19

Let (S, \mathfrak{n}) be a RLR with dim $S = n \geq 2$. Let $\mathfrak{n} = (X_1, X_2, \dots, X_n)$ and put $A = S / \bigcap_{i=1}^n (X_i \mid j \neq i)$. Then $\mathcal{X}_A = \{\mathfrak{m}\}$.

Corollary 20

Let K/k ($K \neq k$) be a finite extension of fields. Assume that there are no proper intermediate fields between K and k. We put

$$V = K[[t]]$$
 and $A = k[[tK]]$.

Then $\mathcal{X}_A = \{tV\}.$

◆ロト ←問ト ← きト (ま) から(

Let V = k[[t]].

Example 21

- Let $f, g \in V$ such that o(f) = 3, o(g) = 5. We put A = k[[f, g]]. Then $\mathcal{X}_A = \emptyset$.
- **2** Let $f, g \in V$ such that o(f) = 3, o(g) = 4. We put A = k[[f, g]]. Then $\mathcal{X}_A = \{(g, f^2)\}$.
- **3** Let $A = k[[f_5, f_6, f_7, f_8]]$, where $f_i \in V$ such that $o(f_i) = i$ for $5 < \forall i < 8$. Then $\mathcal{X}_A = \emptyset$.

Thank you very much for your attention!

References

- [BHU] J. Brennan, J. Herzog, and B. Ulrich, Maximally generated Cohen-Macaulay modules, Math. Scand. 61, 1987, 181–203.
- [GIW] S. Goto, S. Iai, K.-i. Watanabe, Good ideals in Gorenstein local rings, Trans. Amer. Math. Soc. 353, (2001), 2309–2346
- [GOTWY] S. Goto, K. Ozeki, R. Takahashi, K.-i. Watanabe, and K.-i. Yoshida, *Ulrich ideals and modules*, Preprint 2012.
- [HK] J. Herzog and M. Kühl, Maximal Cohen–Macaulay modules over Gorenstein rings and Bourbaki sequences. Commutative Algebra and Combinatorics, Adv. Stud. Pure Math., 11, 1987, 65-92.
- [S] J. Sally, Cohen-Macaulay local rings of maximal embedding dimension, J. Algebra, **56** (1979), 168–183.