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Introduction

Introduction

© In 1987 B. Ulrich and the other authors [BHU] introduced
Maximally Generated Maximal Cohen—Macaulay modules.

@ In 2012 S. Goto and the others [GOTWY] generalized the notion
of MGMCM module, which they call Ulrich module/ideal.
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Introduction

© In 1987 B. Ulrich and the other authors [BHU] introduced
Maximally Generated Maximal Cohen—Macaulay modules.

@ In 2012 S. Goto and the others [GOTWY] generalized the notion
of MGMCM module, which they call Ulrich module/ideal.

| am interested in the following question.

Question 1

How many Ulrich ideals are contained in a given
Cohen—Macaulay local ring of dimension 17
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Introduction

Throughout of my lecture, we assume
Q@ (A, m) a Cohen—Macaulay local ring, dmA =1
@ / an m—primary ideal in A, n = pa(/)

© |/ contains a parameter ideal Q = (a) of A as a reduction.
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Introduction

Throughout of my lecture, we assume
Q@ (A, m) a Cohen—Macaulay local ring, dmA =1
@ / an m—primary ideal in A, n = pa(/)

© |/ contains a parameter ideal Q = (a) of A as a reduction.

Definition 2 ([GOTWY])

We say that / is an Ulrich ideal of A, if
Q@ /2Q, ?=0QI and
Q //1?is A/l-free.
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Introduction

Let X4 be the set of Ulrich ideals in A.
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Introduction

Let X4 be the set of Ulrich ideals in A.
Theorem 3 ([GOTWY])

Suppose that A is of finite C—M representation type. Then X, is
a finite set.
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Introduction

Let X4 be the set of Ulrich ideals in A.
Theorem 3 ([GOTWY])

Suppose that A is of finite C—M representation type. Then X, is
a finite set.

Let
A= K[[t™, t2,.. . t*]] Ck[[t]] = A

be the numerical semigroup ring over a field k, where
0 < ay,a,...,a € Z such that GCD(ay, a,,...,a,) = 1.
Let X5 = {Ulrich ideals in A generated by monomials in t}.
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Let X4 be the set of Ulrich ideals in A.
Theorem 3 ([GOTWY])

Suppose that A is of finite C—M representation type. Then X, is
a finite set.

Let
A= K[[t™, t2,.. . t*]] Ck[[t]] = A

be the numerical semigroup ring over a field k, where
0 < ay,a,...,a € Z such that GCD(ay, a,,...,a,) = 1.
Let X5 = {Ulrich ideals in A generated by monomials in t}.

Theorem 4 ([GOTWY])
The set X5 is finite. J
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Introduction

We continue the research [GOTWY], providing a practical
method for counting Ulrich ideals in dimension 1.
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A brief survey

A brief survey

Lemma 5

Suppose that 1> = QI. Then TFAE.
© / is an Ulrich ideal of A.
Q //Q is a free A/l-module.
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A brief survey

Lemma 5

Suppose that 1> = QI. Then TFAE.
© / is an Ulrich ideal of A.
Q //Q is a free A/l-module.

Proof.

The equivalence of conditions (1) and (2) follows from the splitting
of the sequence

0= Q/QI = 1/I?>—=1/Q—0.

When this is the case, //Q = (A/I)""!, since Q = (a) is generated
by a part of a minimal basis of /. O

y
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Let / be an Ulrich ideal and look at the isomorphism
Then we get the following.

1/Q = (A/1)" 1.
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A brief survey

Let / be an Ulrich ideal and look at the isomorphism
1/Q = (A/1)" 1.

Then we get the following.

Corollary 6

Q Q:/=1.

9 0 < (n—1)x(A/) =1a(l/Q) < 2(A/Q) = x(A),
where t(A) = a(Exth(A/m, A)). Hence n < 1(A) + 1.
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A brief survey

Let / be an Ulrich ideal and look at the isomorphism
1/Q = (A/1)" 1.

Then we get the following.

Corollary 6

Q Q:/=1.

9 0 < (n—1)x(A/) =1a(l/Q) < 2(A/Q) = x(A),
where 1(A) = (a(Exty(A/m, A)). Hence n < r(A) + 1.

Therefore, if A is a Gorsenstein ring, A/l is a Gorenstein ring,
n=2, and | is a good ideal in the sense of [GIW].
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Let / be an Ulrich ideal of A. Let

F, :

s FAF L s s R AR A0
be a minimal free resolution of A/l and f; = ranka F;

(i >0).
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A brief survey

Let / be an Ulrich ideal of A. Let
Fo: o FAF > >R3-S AI-0

be a minimal free resolution of A/l and f; =ranka F; (i > 0).

Theorem 7 ([GOTWY])

(n—1)"tn (i =21),
P = { (i = 0)

for i > 0. Hence 3; = (}) + (n—1)p;_1 for Vi > 1.
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A brief survey

Look at the exact sequence

0—Q— I — (A/N*D 0.
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A brief survey

Look at the exact sequence

0= Q—1— (A1 4.

Corollary 8 ([GOTWY])

A minimal free resolution of | is obtained by those of @ and
(A/1)Etn=1),

Corollary 9 ([GOTWY])
Syzi Y (A/1) =2 [Syz,(A/ DB for all i > 1. Hence

Syzu'(A/1) = Syzy(A/1)

for all i > 1, if A is a Gorenstein local ring.

S. Goto, N. Taniguchi (Meiji University) Ulrich ideals of dimension one November 24, 2012 10 / 24



A brief survey

Theorem 10 ([GOTWY])

Let | and J be Ulrich ideals of A. Then | = J if and only if

Syza(A/1) = Syz,(A/J)
for some i > 0.
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Example 11

Suppose that A is a Gorenstein local ring of dimension 1 and / an
Ulrich ideal of A. Then pa(l) = 2. We write | = (a,x) (x € A)
where @ = (a) is a reduction of /. Then x*> = ay for some y € I,
since /I = al, and a minimal free resolution of A// is given by

)0
Fo: o2 N 2N

— A

(2_x)

a x .
—" A= A/l — 0.

Hence [ = [*.
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The Gorenstein case

The Gorenstein case

Definition 12 ([GIW])

We say that / is a good ideal of A, if
Q@ /2= QI and
Q@ Q:/=1.
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The Gorenstein case

The Gorenstein case

Definition 12 ([GIW])

We say that / is a good ideal of A, if
Q /1?= QI and
Q@ Q:/=1.

Let V4 be the set of intermediate rings A C B C Q(A) such that B is
a finitely generated A-module and put

Ya ={l|Iis a good ideal of A},

Zp ={B € V4| B is a Gorenstein ring}.
Hence X4, C YV, and Z4 C V,.
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The Gorenstein case

Lemma 13 (Main Lemma)

We have a well-defined bijective map
©:Zp—+Ya, B—A:B,

where for each B € Z4, A: B € Xs < ua(B) =2.
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Lemma 13 (Main Lemma)

We have a well-defined bijective map
©:Zp—+Ya, B—A:B,

where for each B € Z4, A: B € X4 < ua(B) = 2.

Proof.

Let B € Z4 and put J =A: B. Then J = bB for some b € J, since
B is a Gorenstein ring and J = Kp. Let ¢ = bA. Then J? = qJ and
q:J=A:B=J, sothat Jis a good ideal of A. If J € X,, then
pa(B) = pa(J) = 2. Suppose that pa(B) = 2. Then J/q is cyclic,
since q is a minimal reduction of J. Hence J/q = A/J, because
q:J=J. Thus J € Xa. O

vy
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Theorem 14

Let A= k[[t", t"", ..., t*"2]] (n > 3). Then
{(t%, %)} (n=3),
Xa =

(n=4)
(n >5).

{(t* — X5, t%) | A € k}
0
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A brief survey The Gorenstein case The non—Gorenstein case

Proof of the case: n=2g+1 (q>2). Let /| € Xyand S = 1.
Then
t"V C k[[t", ", .. Y] C S,

since 2" is the generator of the socle of Q(A)/A. Let
C=S:V=tV(c>0).
Then ¢ <n=2qg+ 1. We put ¢ ={s(V/S). Hence
20 = c,

since S is a Gorenstein ring. Thus ¢ < q.
Look at B
S:=S/mS2J:=mz2 J>=(0).

Take ¢ € ms so that J = (£). Then £ # 0 and £€=0in3
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Proof of the case: n=2qg+ 1 (q > 2) (continued).

Hence
£emSCt"V and S=A+ A,

because S/mS = k + k&. Therefore 2-0(¢) > n=2q + 1, so that
o(§) > g+ 1. Thus

S=A+ AL C T = k[t 92 . 2T
Hence S = T, because

(a(V/T) = q and £5(V/S) < q.

This is impossible. Thus X4 = 0. O
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The Gorenstein case

For some special class of one—dimensional Cohen—Macaulay local
rings possessing finite C—M representation type, we have the
following, where k[[X, Y]] and k[[t]] are the formal power series rings
over a field k, and x, y denote the images of X, Y in the

corresponding ring.

November 24, 2012 18 / 24
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For some special class of one—dimensional Cohen—Macaulay local
rings possessing finite C—M representation type, we have the
following, where k[[X, Y]] and k[[t]] are the formal power series rings
over a field k, and x, y denote the images of X, Y in the
corresponding ring.

Theorem 15
The following assertions hold true.
Q Xiqe,ey = {(t%, )}
Q Xy, = 0.
Q X vi(voe—vaeny) = {(x,y*F1), (x%, y)}, where £ > 1.
Q Xigpx,vi/(viva-xay = {(x% y)}-

o anx,vn/<x2—v2? =
{(x%y), (x = y5 y(x+¥9), (x + y', y(x — "))}, where £ > 1
and ch k # 2.

v
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The non—Gorenstein case

Theorem 16

Let (V,n) be a Cohen—Macaulay local ring with dim V' = 1. Let
A= V[Y]/(Y") (n>2). Then §X4 = cc.
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The non—Gorenstein case

Theorem 16

Let (V,n) be a Cohen—Macaulay local ring with dim V' = 1. Let
A= V[Y]/(Y") (n>2). Then §X4 = cc.

Proof.

Suppose n =2g+1 (g > 1) and let a be a parameter for V. For
each £ >0, let | = I, := (a* — y, a’y9), where y is the image of Y in
A. Then I2 = (a* — y)I, while A/(a** — y) = V/(a*") and

A/l =V /(a*"). Hence £y (1/(a* — y)) = Lv(A/I). Therefore

I/(a* — y) =2 A/l as A-modules, so that I, = | € X4. Hence

ﬂXA = OQ.

For the case n = 2q (g > 1), consider | = I, := (&, y9). O

4
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The non—Gorenstein case

Theorem 17

Suppose that A = A and A is a reduced ring. Let A be the integral
closure of A in the total quotient ring. Then

Xp={m}, if mACA and A# aRLR
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Theorem 17

Suppose that A = A and A is a reduced ring. Let A be the integral
closure of A in the total quotient ring. Then

Xp={m}, if mACA and A# aRLR

Proof.

The ring A is a finitely generated A-module and mA = m. Take

a € m so that m = aA. Then m? = am and pa(m) > 1. Thus

m € X,. Conversely, let | € X4 and choose a reduction Q = (a) of /.
Then mé C A, since é C A. Hence m/ C Q. Therefore | = m, since
1/Q is A/l—free. Thus X4 = {m}. O

4

S. Goto, N. Taniguchi (Meiji University) Ulrich ideals of dimension one November 24, 2012 20 / 24



Introduction A brief survey The Gorenstein case The non—Gorenstein case Using value semigroups References

Corollary 18
Let n > 2 and A = k[[t", t"™, ... t>"!]]. Then X4 = {m}.
Corollary 19
Let (S,n) be a RLR with dimS =n > 2. Let n = (X1, Xo,..., X,)
and put A=S/N"_,(X;|j#1). Then Xy = {m}.
Corollary 20
Let K/k (K # k) be a finite extension of fields. Assume that there
are no proper intermediate fields between K and k. We put

V = K][t]] and A= k[[tK]].
Then X, = {tV}.
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Using value semigroups

Let V = Kk][t]].

Example 21

Q Let f, g € V such that o(f) = 3,0(g) = 5. We put
A = k[[f,g]]. Then X4 = 0.

@ Let f,g € V such that o(f) = 3,0(g) = 4. We put
A= k[[f,g]]. Then X4 = {(g,?)}.

@ Let A= kl[[fs, fs, 2, f3]], where f; € V such that o(f;) = i for
5 <Vi<8. Then X, = 0.
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Using value semigroups

Thank you very much for your attention!
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